
eurolingo
Quantitative linguistic distance computation

Theodore G Tucker

27th June 2019

Submitted for the BSA Silver CREST Award

Contents

I. Pre-project work 2

1. Introduction 2

2. Aims and planning 3

II. Investigation 6

3. Research 6

4. Programming 9

III. Outcomes 19

5. Findings 19

6. Wider implications 20

1



Part I.

Pre-project work

0.1. Resources

Throughout this report, where references are made to �les, they are relative to the eurolingo directory.

All code �les (contained within the eurolingo directory) may be downloaded from https://tti0.net/

eurolingo/dist/eurolingo_latest.zip.

The eurolingo game can be played at https://tti0.net/eurolingo/live/game/index.html.

An electronic copy of this report is available at https://tti0.net/eurolingo/CREST_silver_report.pdf.

Appendix 1 of this report is available at https://tti0.net/eurolingo/CREST_silver_report_app1.pdf.

1. Introduction

1.1. Preface

This project grew out of the development of a game, eurolingo, in which the player is presented with a

sentence, and must guess which language it is written in. The questions would be in multiple choice format,

and, to increase the di�culty of the game, the incorrect languages (i.e. the `red herring' answers) which

appeared in the list would be linguistically `close' to the correct answer.

All sentences included in the game would be in a language native to geographical `Europe'.

I decided that the computer might calculate linguistic distance, in order to determine which red herrings

to show, by the creation of a `family tree' of languages, using pre-existing data, in Python 3 objects. The

algorithm could �nd the distance between a given node on the tree and all others, and hence, determine

which languages used by the game are closest to the correct answer.

1.2. Inspiration

I was inspired, at least in part, to create the game after reading two linguistic books:

• Lingo1 � Speci�cally chapter 25 (`Pin the name on the language'), which describes the distinguishing

features of the varied languages spoken on the European continent. The language used in this program

(listed above) are (some of) those featured in this book.

• Seven Languages in Seven Weeks2 � This book is about programming languages, not spoken

languages, speci�cally chapter 2 (`Ruby'), which discusses an example of Ruby's class structure using

a family tree. I though it interesting to do something similar in Python and JSON.

1.3. Mentor

This project was mentored by Dr Sam Crawshaw, Head of Middle School and Teacher of Biology at Manch-

ester Grammar School.

1.4. Licensing

This project (including its documentation) is licensed under theMIT License, but remains copyright Theodore

Tucker, 2018-19. A copy of the license text can be found in the code �les: LICENSE.txt.

1Dorren, G. (2015). Lingo. London: Pro�le Books.
2Tate, B. (2010). Seven Languages in Seven Weeks. Dallas TX: Pragmatic Bookshelf.

2

https://tti0.net/eurolingo/dist/eurolingo_latest.zip
https://tti0.net/eurolingo/dist/eurolingo_latest.zip
https://tti0.net/eurolingo/live/game/index.html
https://tti0.net/eurolingo/CREST_silver_report.pdf
https://tti0.net/eurolingo/CREST_silver_report_app1.pdf


2. Aims and planning

2.1. Aims

My main aims were as follows:

1. To complete the eurolingo game, as envisaged in Section 1

2. In doing so, compile tables containing the relative linguistic distances between all pairs of the following

languages:

Language ISO 639-2 code3

Arabic (Modern Standard) ara

Belarusian bel

Breton bre

Bulgarian bul

Catalan cat

Czech ces

Cornish cor

Welsh cym

Danish dan

German deu

Greek (Modern) ell

English eng

Esperanto epo

Estonian est

Basque eus

Faroese fao

Finnish fin

French fra

Frisian (West) fry

Scottish Gaelic gla

Irish gle

Galician glg

Greek (Classical) grc

Hebrew heb

Croatian hrv

Sorbian (Upper) hsb

Hungarian hun

Armenian (Eastern) hye

Icelandic isl

Italian ita

Latin lat

Lithuanian lit

3



Language ISO 639-2 code3

Latvian (Standard) lvs

Macedonian mkd

Maltese mlt

Dutch nld

Norwegian (Bokmål) nob

Ossetian oss

Polish pol

Portuguese por

Romani rom

Russian rus

Slovak slk

Slovenian slv

Spanish spa

Albanian sqi

Serbian srp

Swedish swe

Turkish tur

Ukrainian ukr

Yiddish yid

3. In doing so, observe the e�ectiveness of my approach for quantitatively calculating linguistic distance

Through this project, I intended to gain experience using:

1. Cloud computing technologies, to parse the dataset of sentences for the game;

2. Object-oriented programming (OOP) in Python 3;

3. LYX and LATEX to typeset the report.

I already had extensive experience in frontend web development, using HTML5, CSS3, and JavaScript, with

which I intended to create the game, before undertaking this project.

2.2. Stages

To achieve these aims and learning objectives, I split the project into the following stages:

1. Pre-project work: research on existing e�orts in this �eld, and the theory behind linguistic distance

2. Programming: game interface, scoring, and logic

3. Programming: generating relationship tables for the game's multiple choice logic

4. Evaluation

5. Post-project work: write-up of this report, and completion of the CREST Student Pro�le Form

2.3. Time management

I completed this project over a 4-day period, from Monday 24th June 2019, to Thursday 27th June 2019:

my school's `Activities Week'. Working for 7.5 hours each day during this week would give a total work time

of 30 hours, as recommended for the Silver Award.

Beforehand, I prepared the following objectives, to be completed by the end of each day:

3An internationally standardised set of short codes to represent languages; see https://loc.gov/standards/iso639-2/php/

code_list.php

4

https://loc.gov/standards/iso639-2/php/code_list.php
https://loc.gov/standards/iso639-2/php/code_list.php


Monday: Development of game; write-up report (Sections 1, 2, 4.1, 4.2)

Tuesday: Finish development of game; complete research for table generation; write-up report (Sections

3.1, 3.2, 4.3)

Wednesday: Development of code for table generation; write-up report (Section 4.4)

Thursday: Complete evaluation and post-project work; write-up remaining sections of report; complete

CREST Student Pro�le Form

I intended then to hand in my project to my mentor for review in week commencing Monday 1st July 2019,

and submit the entire project to CREST for assessment during the 2019 summer break.

I had started development of the game, and processed the dataset of sentences before Activities Week.

I worked alone on this project, hence, I completed all work myself.

2.4. Materials needed

My main tool in the development of this project was my laptop computer, whose speci�cations are given

below:

$ lshw -short # (truncated)

H/W path Device Class Description

=======================================================

system Aspire E5 -511 (Aspire E5 -511 _0905_V1 .06)

/0/0 memory 64KiB BIOS

/0/4 processor Intel(R) Celeron(R) CPU N2840 @ 2.16 GHz

/0/4/8 memory 32KiB L1 cache

/0/4/9 memory 1MiB L2 cache

/0/7 memory 24KiB L1 cache

/0/f memory 8GiB System Memory

/0/100/2 display Atom Processor Z36xxx/Z37xxx Series Graphics &

Display

/0/100/14/0/2/1 communication Atheros AR3012 Bluetooth

/0/100/1b multimedia Atom Processor Z36xxx/Z37xxx Series High

Definition Audio Controller

/0/100/1c/0.1 enp1s0f1 network RTL8111 /8168/8411 PCI Express Gigabit Ethernet

Controller

/0/100/1c.1/0 wlp2s0 network QCA9565 / AR9565 Wireless Network Adapter

/0/1/0.0.0/1 /dev/sda1 volume 931 GiB EXT4 volume

/0/2/0.0.0 /dev/cdrom disk DVD -RAM UJ8E2Q

$ lsb_release --all

Distributor ID: elementary

Description: elementary OS 5.0 Juno

Release: 5.0

Codename: juno

$ uname -a

Linux ibex 4.15.0 -52 - generic #56- Ubuntu SMP Tue Jun 4 22:49:08 UTC 2019 x86_64 x86_64

x86_64 GNU/Linux

Code was written using the GitHub Atom editor4.

Throughout my work, I frequently referenced the following resources:

• Python 3 o�cial documentation5

• PythonTutor code visualisation software 6

• W3Schools reference guides (HTML, CSS, JavaScript, and jQuery)7

• Dasgupta, S., 2016. Computer Science: A Very Short Introduction (Very Short Introductions). Oxford:

Oxford University Press.

4https://atom.io/
5https://docs.python.org/3/index.html
6http://pythontutor.com/
7https://www.w3schools.com/

5

https://atom.io/
https://docs.python.org/3/index.html
http://pythontutor.com/
https://www.w3schools.com/


• LYX o�cial documentation 8

All other resources used (websites, books, etc.), are referenced throughout the report.

2.5. Safety considerations

I did not anticipate any signi�cant speci�c safety risks in the completion of this project.

However, I still employed best practice with long-term computer use, such as maintaining good posture (to

mitigate the risk of contracting RSI), and taking regular screen breaks (to mitigate the risk of contracting

Computer Vision Syndrome).

I backed up all work to a private Git server at the end of each day, to retain (some) version control, and to

have a copy of the �les if my computer's hard drive were to fail.

Part II.

Investigation

3. Research

3.1. Linguistics

`The formation of di�erent languages and of distinct species and the proofs that have both been developed

through a gradual process, are curiously parallel.' � Charles Darwina

aDarwin, C. (1871). The descent of man and selection in relation to sex. London: John Murray.

A language consists of a vocabulary (words) and a grammar (the rules for amalgamating words to give a

more complex meaning � i.e. in a sentence), which together allow a speaker to convey meaning to a listener.

Ethnologue estimate that over 7000 languages are spoken today, yet, one might notice similarities between

them. For example, the French: bonjour and the Italian buongiorno both have the same meaning (good day),

and are similar in spelling and pronunciation. Many more pairs like these, and historical evidence (showing

similarity between Classical Latin and Modern Italian, both spoken in the same region, but during di�erent

time periods) has led most linguists to believe in the stammbaum theory: that languages are related to one

another, and descended from common ancestors, and eventually, to a common ancestor - Proto-Everything :

the �rst language spoken on Earth9.

Hence, based on analyses of vocabulary, grammar, historical artefacts, and numerous other factors well

beyond the scope of this report, linguists have been able to classify languages into families. Those with

which eurolingo is most concerned are Indo-European, Uralic, Semitic, and Turkic.

I intended, using a pre-existing family trees of languages for the eurolingo dataset, to �nd the relative

distances between one language in eurolingo to every other on this tree � a somewhat crude (see Part III)

measure of linguistic distance (how closely related one language is to another).

3.2. Computer Science

3.2.1. Object-oriented programming

Before undertaking this project, I had no prior experience with OOP, but was aware that its use would be

necessary in order to create a binary tree � the data structure most suitable for holding the stammbaum

data.

Following my research, I understood that OOP involves classes: templates for objects. One de�nes a class

once, and can then create objects based on this class. An object can have attributes (e.g. fruitSpecies),

8https://wiki.lyx.org/
9This Proto-Everything theory, whilst certainly plausible, is less universally accepted in the linguistic community, but conve-
nient for eurolingo.

6

https://wiki.lyx.org/


Figure 1: A map showing language families in Europe

Source: https://commons.wikimedia.org/wiki/File:Language_Families_in_Europe_(en).svg

and methods: operations one performs on an object (e.g. eatFruit()); attributes can be attached to the

instance (the object), or the class (all objects of the class). This idea is known as encapsulation (widely

described as the most fundamental concept in OOP), which may formally be described as bundling all data,

and methods used to operate on that data, into a single entity: the object.

Subsequently, I enquired into another key OOP paradigm: inheritance. Simply, inheritance refers to the fact

that it is possible to de�ne a class as a sub-class of another, which, along with any instances, will inherit

all attributes and methods from the parent. For example, we might have a class fruit with the method

and attribute described above, but then de�ne the sub-class citrus, with a new method (peelFruit) and

attribute (acidity):

CLASS citrus:

parent:

CLASS fruit

methods:

eatFruit ()

peelFruit ()

attributes:

fruitSpecies

acidity

Finally, I applied my new understanding of theoretical OOP into Python 3, the language in which I would

program the linguistic distance algorithm, by following examples set by Malik, 2018.

3.2.2. Trees

A binary tree is an example of a graph, which, in Computer Science, is an abstract data structure representing

objects related in a hierarchy. The objects themselves are known as nodes (or vertices), and the links between

them edges (or links).

For a binary tree, each parent node has only two children (usually referred to as left and right), and, as with

all trees, there is only ever one possible path between two nodes.

7

https://commons.wikimedia.org/wiki/File:Language_Families_in_Europe_(en).svg


At this point in my research, I believed that I had encountered a serious issue, as, in the language tree which

I was attempting to encode, several parents had more than two children � the tree was n-ary; moreover, an
axiom of my further research (on �nding paths between nodes in binary trees) was that data would be in a

binary tree. Therefore, I was required to research further into left-child right-sibling binary trees, and Knuth

transformations, a method for the conversion of an n-ary tree (such as the language tree) into a binary tree.

However, as my algorithm would �nd the distance between two nodes, the Knuth transformation does not

preserve the signi�cance of sibling relationships, as new edges must be created (shown in blue in Figure 2(b).

For example, in Figure 2(a), the distance from node J to Q is 5 (path J > B > A > E > L > Q), however, in

Figure 2(b), the distance between the same nodes is 10 (J > I > H > B > C > D > E > L > Q).

Therefore, I had to investigate more fully how the algorithms which I intended to use later on might be

applicable in the case of an n-ary tree, rather than the simpler binary tree.

Figure 2: Knuth transformation of an n-ary tree into a binary tree

Source: https://commons.wikimedia.org/wiki/File:N-ary_to_binary.svg

3.2.3. Distance between two nodes

Because there is only one path between any two nodes in a tree structure, any two nodes in a tree must share

a single lowest common ancestor (LCA) � that is, the node furthest from the root (the initial node, on the

highest layer of the tree) which is an ancestor of both of the two nodes. Once I found the LCA for all pairs

of nodes, I could then easily �nd the distance between the nodes, completing the task.

I researched various algorithms for �nding an LCA, all of which have e�ciency O(n), where n is the height

(number of layers) on the tree. I decided to implement the following algorithm:

Algorithm 1 Algorithm to �nd the LCA of nodes x1and x2 in a tree T

1. Find the path from node Trootto x1, using tree transversal, stored in an array, path1, as a series of

instructions for the `journey' (e.g. [left, right, left, left]).

2. Find the path from node Trootto x2, using tree transversal, stored in a similar array, path2.

3. Compare both arrays, and return the greatest n for which path1[n] == path2[n]. This is the LCA.

The distance between the two nodes may then be computed, using the following algorithm:

Algorithm 2 Algorithm to �nd the distance between nodes x1and x2 in a tree T

The distance, d, between any arbitrary nodes x1and x2 in a tree is given by:

d = r(x1) + r(x2)− 2(r(LCA))

Where r(n) is the distance (in our case, number of layers) from Troot to node Tn, and LCA is as calculated

earlier.

8

https://commons.wikimedia.org/wiki/File:N-ary_to_binary.svg


3.2.4. Sources

3.2.4.1. Linguistics

• Rowe, B. and Levine, D. (2018). A Concise Introduction to Linguistics. Abingdon: Routledge, pp.

340-341.

• Eifring, H. and Theil, R. (2005). Linguistics for Students of Asian and African Languages. Oslo: Uni-

versity of Oslo, Chapter 5. Available at: https://www.uio.no/studier/emner/hf/ikos/EXFAC03-AAS/

h05/larestoff/linguistics/

3.2.4.2. Computer Science

• Djidjev, H., Pantziou, G. and Zaroliagis, C. (1991). Computing shortest paths and distances in planar

graphs. Automata, Languages and Programming, pp. 327-338.

• Pfaltz, J. (1975). Representing Graphs by Knuth Trees. Journal of the ACM, 22(3), pp. 361-366.

• Malik, U. (2018). Object Oriented Programming in Python. Internet: Stack Abuse. Available at:

https://stackabuse.com/object-oriented-programming-in-python

• Wentworth, P., Elkner, J., Downey, A. and Meyers, C. (2012). Chapter 27. Trees. Internet: How to

Think Like a Computer Scientist: Learning with Python 3. Available at: http://openbookproject.

net/thinkcs/python/english3e/trees.html

• TutorialsPoint. (n.d.). Python - Binary Tree. Internet. Available at: https://www.tutorialspoint.

com/python/python_binary_tree.htm

• GeeksForGeeks. (2014). Lowest Common Ancestor in a Binary Tree (1). Internet. Available at:

https://www.geeksforgeeks.org/lowest-common-ancestor-binary-tree-set-1

• GeeksForGeeks. (2014). Find distance between two nodes of a binary tree. Internet. Available at:

https://www.geeksforgeeks.org/find-distance-between-two-nodes-of-a-binary-tree

4. Programming

4.1. Parsing dataset

4.1.1. Tatoeba

The eurolingo game required a dataset of sentences, from which one would be randomly chosen to display to

the user. After some brief research online, I encountered the Tatoeba10 project: a database containing over

7 million sentences in over 300 di�erent languages, many of which are accompanied by translations.

However, at the time of writing, the simple Tatoeba database11, a CSV, formatted as follows: ID [tab]

ISO [tab] Sentence , exceeded 110MB in size compressed � far too large for processing on my development

machine, or a web browser on a user's device.

Furthermore, many sentences in the database were unnecessary, as their language was not included in the

scope of eurolingo (see table in Section 2.1). Hence, I resolved to select 150 sentences in each of the 51

languages, giving 7650 sentences total, and a signi�cantly reduced �le footprint.

This dataset would then be imported into the game, ideally in JSON format.

4.1.2. Approaches

I considered 3 di�erent approaches in the reduction of the dataset:

1. Using a Python 3 script and the Requests II library12, with which I had prior experience, to iterate

through each language, and request 150 sentences for each, from some sort of API.

2. Downloading the entire dataset, and processing on my development machine with a Python 3 script.

3. Uploading the entire dataset to a cloud Platform as a Service (PaaS) provider, and perform processing

there.
10https://tatoeba.org/eng
11http://downloads.tatoeba.org/exports/sentences.tar.bz2
12https://2.python-requests.org/en/master

9

https://www.uio.no/studier/emner/hf/ikos/EXFAC03-AAS/h05/larestoff/linguistics/
https://www.uio.no/studier/emner/hf/ikos/EXFAC03-AAS/h05/larestoff/linguistics/
https://stackabuse.com/object-oriented-programming-in-python
http://openbookproject.net/thinkcs/python/english3e/trees.html
http://openbookproject.net/thinkcs/python/english3e/trees.html
https://www.tutorialspoint.com/python/python_binary_tree.htm
https://www.tutorialspoint.com/python/python_binary_tree.htm
https://www.geeksforgeeks.org/lowest-common-ancestor-binary-tree-set-1
https://www.geeksforgeeks.org/find-distance-between-two-nodes-of-a-binary-tree
https://tatoeba.org/eng
http://downloads.tatoeba.org/exports/sentences.tar.bz2
https://2.python-requests.org/en/master


4.1.2.1. API Having been encouraged by the API Speci�cation13 discovered on the GitHubWiki of Tatoeba,

I discovered that, whilst such an API had been developed in 201514, it was incomplete, required cloning

the entire Tatoeba site to my device, and its developers deemed it experimental. Moreover, exploration

of Tatoeba's own documentation for end users15 con�rmed that no stable API was currently available. I

therefore decided that following Approach 1 would not be possible.

4.1.2.2. Local parsing After downloading and extracting the Tatoeba database, I converted the CSV �le

to a JSON �le online16, with structure as described in Section 4.2.

I wrote a simple, but highly ine�cient (O(n3)), Python 3 script (which has now been lost), approximating

to the following:

# sentences = JSON object above

newSentences = [];

possibleLangs = ["ara", "bel", "bre"] # etc. for other languages

FOR i IN possibleLangs:

FOR j in RANGE [1, 150]:

FOR k in sentences:

if k.lang == i:

newSentences.append(k)

Even if considering a more e�cient algorithm than the one above, on my modest development machine, this

code would have taken several months to years to execute over the 350MB+ extracted dataset.

Thus, I decided that following Approach 2, whilst theoretically possible, would be highly impractical.

4.1.2.3. PaaS Finally, I decided that, given the enormous dataset, I would use Google Cloud PaaS prod-

ucts, speci�cally Cloud Storage17 and BigQuery18. I had some prior experience with Google Cloud BigQuery,

a PaaS product designed speci�cally for running operations on large datasets, and, which is free for my rel-

atively small dataset.19

4.1.3. PaaS implementation

The Python 3 script quotes/bigquery.py runs a Google Cloud BigQuery request, using the BigQuery client
library20.

The list of languages for which queries are run is stored in quotes/languages.json.

quotes/bigquery.py exports to quotes/quotes.csv. However, the eurolingo game pulls its sentences from

quotes/quotes.json, so I had to convert the CSV to JSON manually, using the same method described

earlier.

I performed the steps outlined in my documentation: quotes/README_DATASET.md, executing the Python 3

script quotes/bigquery.json � this took approximately 45 seconds to complete.

4.2. JSON formatting

eurolingo involves three main datasets: the languages, the sentences, and the computed relationships between

languages.

I decided to format all of these datasets using JavaScript Object Notation (JSON), due to the ease with

which objects can be nested, necessary for relationships, my familiarity with the format, and out-of-the-box

13https://github.com/Tatoeba/tatoeba-api/wiki/Tatoeba-API-specification-2
14https://github.com/Tatoeba/tatoeba-api
15https://en.wiki.tatoeba.org/articles/show/faq
16https://csvjson.com/csv2json
17https://cloud.google.com/storage/
18https://cloud.google.com/bigquery/
19Google charge only when operations would exceed US$300 in cost.
20https://cloud.google.com/bigquery/docs/reference/libraries

10

https://github.com/Tatoeba/tatoeba-api/wiki/Tatoeba-API-specification-2
https://github.com/Tatoeba/tatoeba-api
https://en.wiki.tatoeba.org/articles/show/faq
https://csvjson.com/csv2json
https://cloud.google.com/storage/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/docs/reference/libraries


compatibility with JavaScript and Python 321. Furthermore, JSON has been standardised22, so anyone who

wishes to adapt my code in the future, for example, to add another language, can refer to well-established

documentation.

The datasets are stored in .json �les, such that one �le can be written by the Python generators, and read

by the JavaScript game.

4.2.1. Challenges

I encountered the following challenges, speci�c to eurolingo, when handling, converting and parsing these

datasets:

• Presence of non-ASCII characters in some sentences. Handled by con�guration of programming lan-

guages to treat �les as UTF-8 � modern web browsers should do this automatically.

• Presence of the ”(&quot;) character in some sentences involving direct speech, causing the JSON

interpreter to think that a sentence had ended, and then throw a syntax error when the sentence

continued after this point. Handled by the manual removal of sentences with containing the &quot;
character from the dataset, as this issue was discovered only after I had written most of the code for

eurolingo.

4.2.2. quotes/languages.json

This is an array of JSON objects, each representing one of the 51 languages in which eurolingo sentences are

written, of which an example is:

{

"language ": "Estonian",

"native ": "Eesti",

"iso": "est"

}

The language's ISO code (iso) is the primary key.

4.2.3. quotes/quotes.json

This is an array of JSON objects, each representing a sentence used by the eurolingo game, of which an

example is:

{

"id": 691393 ,

"lang": "deu",

"quote": "Herr Smith machte ihm einige Spielzeuge ."

}

The sentence's ID on Tatoeba (id) is the primary key.

4.2.4. Relationship tables

These are arrays of JSON objects, where each array (generated using a di�erent method), is stored in its

own .json �le. These .json �les are stored in relationships/ ∗ .json.
Each object in each array represents one origin object (i.e. the correct language for a certain question. Each

object also contains an array of destination objects. Each destination object has a distance score from it to

the origin, relative to all other destinations, between 0 and 1, where 1 is the language itself.

21Technically, one must include the json library when working in Python, but this is distributed along with the Python
interpreter.

22See IETF RFC #8259.

11



{

"origin ": "ara",

"destinations ": [

{"dest": "ara", "score": 1},

{"dest": "bel", "score": 0.39622641509433965} ,

{"dest": "bre", "score": 0.3584905660377358} ,

{"dest": "bul", "score": 0.6981132075471698} ,

// etc. for all other languages

]

}

In the top level array, the object's origin ISO code (origin) is the primary key.

In the second level array of destinations, the object's origin ISO code (dest) is the primary key.

4.2.4.1. Test tables relationships/test.py is a Python 3 script which generates a random relationship

table (relationships/test.json), in order that the JavaScript game could be tested before development

of the actual linguistic distance code had been completed.

4.3. Game development

4.3.1. Approaches

I considered 3 di�erent approaches to development of the game:

1. CLI game written in Python 3

2. Pygame game written in Python 3

3. Web-based game written in HTML5, CSS3, and JavaScript

4.3.1.1. CLI A CLI (Command Line Interface) game would be simple to implement, require minimal system

resources, but necessitate that Python 3 be installed on the user's device. As I already intended to write

large amounts of Python 3 code throughout the project, and also wished to make the game aesthetically

pleasing, and easy to use for non-computer scientists, I decided that Approach 1 would not be appropriate.

Figure 3: CLI game mock-up

4.3.1.2. Pygame I had previously used the popular Pygame23 library for Python 3, which allows for the

easy creation of graphical games � giving a more pleasing GUI than a CLI game � however, found that its

text-rendering mechanics are less-suited to text-heavy games, such as eurolingo. For this reason, and the

fact that Python 3 would need to be installed on the user's device, along with the Pygame library, I chose

not to follow Approach 2.

4.3.1.3. Web-based For a number of reasons, I decided that implementing Approach 3 would be most

appropriate:

• My extensive prior experience in front-end web development

• User-friendly and well-designed GUI can easily be developed, using a CSS framework

23https://www.pygame.org

12

https://www.pygame.org


• Code can run on any device with an Internet connection and modern web browser (including mobile

devices), without need to install any additional software

• Game can easily be distributed

4.3.2. Implementation

Figure 4: eurolingo web game interface

The game consists of a single HTML �le, which is located at game/index.html. All dependencies are located
in game/lib, including the custom JavaScript �le which drives the site: game/lib/eurolingo− game.js.

Figure 5: Gameplay logic �owchart

4.3.2.1. Logic commentary of game/lib/eurolingo− game.js This commentary excludes all UI changes.

13



1-7 On game load, initial global variables are set, and those which must be referenced later (thisSentence

and correctLang) are initialised.

10-15 The JSON object POINT_VALUES stores the increments in which points are to be awarded, de-

pending on how the user answers (correctly, with multiple choice, etc.).

17-22 I used the jQuery function $.getJSON to load the three JSON arrays: languages,

dataset of sentences, and the relationship table (see Section 4.2).

These are nested callbacks: jQuery will `call back' the code inside the function after it has made

the synchronous request for the JSON �le. Hence, most code for the game, needing access to all

three JSON arrays, must be inside all of the callbacks. In the callbacks, the JSON returned from

the request function is stored in the appropriate global variable: LANGS, SENTENCES, and RELS.

24 All code inside the jQuery $(document).ready method will run after the DOM has completed

loading in the browser.

26-28 The drop-down menu is populated from the LANGS array, in alphabetical order of English name.

The innerHTML of each HTML option is set to the English name of the language, and the value

set to the corresponding ISO code.

30-35 De�nition24 of code to run on (”#btnPass”).click25.
Award correct points according to POINT_VALUES, increment QUESTIONS by 1, and call ansRender.

37-47 De�nition of code to run when the `Choose' drop-down button is clicked.

Retrieves current value of the drop-down, and compares to the correctLang for thisSentence

(see lines 83-39).

49-68 De�nition of code to run when the `Multiple choice' button is clicked.

From the RELS array, �nd the �rst-level object whose origin attribute is equal to the correct

answer.

Within this object, sort the possible destinations by highest score, and select the top four.

Shu�e their order, and assign each to a HTML button, whose innerHTML is set to the English

name of the language, and whose value is set to the corresponding ISO code.

71-80 De�nition of code to run when any of the four multiple choice option buttons are

clicked.

Get the event.target.value of the clicked button, so that we know which has been clicked, and

compare this to the correctLang. Award points as appropriate.

83-89 De�nition of code to tun when the `Next question' button is clicked.

Using UnderscoreJS's _.sample() method, choose a random object from SENTENCES, and set as

thisSentence.

Using UnderscoreJS's _.findWhere() method, choose the object in LANGS whose ISO code is

equal to that of thisSentence. Therefore, we can now use the full names of a language for

display to the user, rather than ISO codes.

92 Simulate a click of the `Next question' button once only, for the �rst question.

99-125 Function de�nition: guiQuestion(sentenceObject)
Initialises the GUI for a new question, based on the passed sentenceObject, which is displayed

to the user.

127-151 Function de�nition: ansRender(state, correct)
Updates the GUI after a question has been answered, to show if the answer given was correct,

incorrect, or a pass (state), and the correct answer (correct).

4.3.2.2. Libraries I used the following external libraries to save time when coding, as the aims of this

project were not primarily related to web development or JSON object manipulation in JavaScript:

Bulma CSS v0.7.526 Minimalist and responsive CSS framework.

jQuery v3.4.127 JavaScript library to greatly simplify manipulation of DOM elements, removing necessity

for code like:

24The code inside this function will run whenever the event it is attached to �res. Hence, it only has to be de�ned once, and
we do not have to continually listen for a button press, or repeat the code for the next question.

25i.e. when the HTML element with the ID btnPass is clicked

14



var x = document.getElementById ("btnX ");

UnderscoreJS v1.9.128 JavaScript library containing over 100 helper functions; for example, a simple func-

tion to sort an array of JSON objects.

4.4. Relationship table generation

4.4.1. Tree object structure

For use as my pre-existing stammbaum of languages, I used resources published at MultiTree29 (new version),

a free website, operated by the University of Indiana, which produces diagrams of language trees based on

academic studies. I utilised the following studies, which encompassed all languages in eurolingo:

Indo-European family Ethnologue, 2009.

Uralic family Ethnologue, 2013.

Afro-Asiatic family (inc. Semitic) Ethnologue, 2005.

Basque Not part of any above family.

Esperanto Not part of any above family.

Turkish Not part of any above family. Only member of Turkic family in eurolingo.

Having identi�ed the eurolingo languages present in each of the above trees, I then prepared the following

meta-strucutre, within which I would construct the tree object:

Figure 6: eurolingo main tree meta-structure

The full trees underneath Indo-European, Uralic, and Semitic in the diagram above, are included in Appendix

130 to this report.

Based on my research, I wrote a Python 3 script to generate the relationship tables: relationships/oop.py.

4.4.1.1. Logic commentary of relationships/oop.py

4-18 De�nition of Tree object class.

Objects of this class have two attributes: cargo (datatype = string) and children (datatype =

array), and one method (add_children(array)).
In order to fully replicate the stammbaum structure proposed by linguists, the members of

children can themselves be instances of Tree (representing the next layer of the tree, with the

cargo as the name of the sub-family, as suggested by MultiTree (e.g. Finnic)), or, a languages

themselves, stored as a string, containing the ISO code for the language.

71-329 Population of languages.

73 I initialised the variable languages, as an instance of Tree, with a cargo as the name of the root

of the tree � the only node on Level 0: Proto− Everything.

26https://bulma.io/
27https://jquery.com/
28https://underscorejs.org/
29http://new.multitree.org
30https://tti0.net/eurolingo/CREST_silver_report_app1.pdf

15

https://bulma.io/
https://jquery.com/
https://underscorejs.org/
http://new.multitree.org
https://tti0.net/eurolingo/CREST_silver_report_app1.pdf


76-83 Following this, I was able to populate Level 1 of the array, by calling languages' add_children

method, with an array of Tree instances and strings, identical to those shown on Level 1 of the

meta-structure above. However, as I would later be referencing these children by their index

number in languages.children, the preservation of their order, as siblings, whilst not usually

signi�cant in a tree structure, was obligatory. Therefore, for Levels 0 and 1, the sibling order

remained as in the diagram above, and for Levels 2 to 10, the sibling order remains as in Appendix

1.

86-96 I performed the add_children method on languages.children[0], which represents the Tree

object with cargo Indo-European � the 0th sub-family.

97-100 Similarly, I performed the add_children method on languages.children[1], which represents

the Tree object with cargo Uralic � the 1st sub-family. Thus, the signi�cance of sibling order is

shown.

101-329 I repeated this process for the rest of the relevant languages and sub-families in the MultiTree

datasets, although, by Level 10, the index referencing had become rather unwieldy:

languages.children [0]. children [0]. children [0]. children [0]. children

[0]. children [0]. children [0]. children [0]. children [0]. add_children

([])

4.4.1.2. Challenges involving the Tree object class As this project was my �rst major undertaking in

OOP, I attempted to keep the object class as simple as possible, in order to minimise the risk of making a

serious logic error. Although I was successful to this end (2 attributes and 1 method), if I were to attempt

this project again, I would certainly include more attributes, and a method to more accurately delve deeper

into the tree, avoiding the unintelligible references by Level 10, and decreasing the likelihood of making a

transcription error. For example:

languages.children ["Indo -European", "Germanic", "etc"]. add_children ([])

In this way, my code might be more easily understood and adapted, and fully embrace the OOP principle

of encapsulation, as here, in order to assign nodes to the correct parents, I wrote out index numbers on an

A3-sized printout of the MultiTree export; this took handling of objects not only out of the class, but the

computer itself.

4.4.1.3. Challenges involving the MultiTree data Moreover, the data exported from MultiTree, as seen in

Appendix 1, was in SVG format, and I had not planned time to reverse-engineer their front-end JavaScript,

in order to obtain the raw relationship data. This would have avoided the time-consuming and fastidious

task of transcription, and perhaps provided an alternative object class, more re�ned and suitable than my

own.

4.4.2. LCA and distance computation

4.4.2.1. Logic commentary (cont.) of relationships/oop.py

20-24 The function lenJourney(array) allows for 1 to be returned, where an array has no items �

necessary later, as such an array of nodes would imply identity between those nodes.

26-54 De�nition of findPath(tree, destination) function.
This function returns an array of node cargoes, through which one would travel in an instance of

Tree, to make a journey from the root to a node with cargo= destination (whether that be a

sub-family or language). This is an example of a tree traversal algorithm, speci�cally, a pre-order

traversal.

28 Initialisation of empty array, path.

29-46 De�nition of recursive tracePath(tree, destination) function, inside findPath.
As we must return path, the recursive nature of tracePath means that the array

would be constantly overwritten, as we iterate through nodes on the tree. Therefore,

we retain the integrity of path, despite the unusual nature of the nested functions.

16



30 We append str(tree), the cargo of the current node, to path. This index
can be popped later, if we do not �nd our destination.

32 For each child of the current node...

33-36 If child == destination (thus implying that it is a string),

append the child to path. Then raise an exception, to halt

execution of the tracePath, and all its recursive calls, leaving

path in its current, desirable, state.

37-40 As above, but for instances where the child is an instance of

Tree, checking if str(child) (i.e. its self.cargo) is a match,
where findPath has been called to located a sub-family (likely

as a LCA). This code must be repeated, as Python will throw

an exception if we attempted to check child.cargo, where child

is a string.

41-42 Otherwise, if the child is an instance of Tree, and we have not

already found our destination, recursively call tracePath on

the child.

43-46 If, after iterating through all children of the current node, including re-

cursive calls, we have not found our destination, pop the cargo of the

node string from path, as it is not a part of our correct journey.

47-50 Attempt to call tracePath on the tree and destination in the original function

call. The try...except... block is necessary to allow the recursive tracePath to halt

upon discovery, without causing the entire Python script to crash.

51-54 This code will run after tracePath has halted, either due to a discovery, and the

exception, or due to exhaustion of all possible routes through the tree, without a

match.

If path is empty, the root of the tree must have been popped by tracePath, hence,

there is no match anywhere in the tree, so None is returned.

Otherwise, a match has been found, and path is returned.

56-61 De�nition of LCA(path1, path2) function.
This returns a string, which is the LCA of path1 and path2.31

I implemented Algorithm 1, to �nd the LCA, in Python.

63-68 De�nition of calcDistance(node1, node2) function.
This returns an integer, which is the journey length from node1 to node2.

I implemented Algorithm 2, to �nd the distance between the two nodes, based on their LCA, in

Python.

331-356 Calculation of distance for all possible language pairs.

I opened quotes/languages.json, and appended the ISO code of each language to an array

� langs. Then, for each i in langs, for each j in langs, I calculated the distance between

i and j in languages, using the previously de�ned calcDistance function, and wrote this to

relationships/oop.json.

4.4.2.2. E�ciency Where the depth of the tree is n, an execution of findPath(n, ∗) has e�ciency O(n).

However, when the list of languages is increased by p, p2 operations must be completed, giving the entire

program an e�ciency of O(n+ p2).

I could have made this program more e�cient if the relationship tables were stored truly as tables, rather

than nested JSON objects. With my present system, journey length from two discrete points is stored twice,

for example:

ara.destinations[bel] = bel.destinations[ara]

31This assumes that all node cargoes throughout the tree are unique. Otherwise, when we call findPath on the LCA (necessary
to calculate distance), it will return the path to the left-most matching node in the tree, ignoring the second (which may be
desired). However, for eurolingo, all cargoes were unique.

17



I formatted the tables in this way for ease of programming the game, avoiding multi-dimensional arrays;

representation of the distance data in the style of a mileage chart (see below), whilst more di�cult to

program in JavaScript, would reduce possibility of error and somewhat simplify my code in Python.

Figure 7: A chart showing the distance, in miles, between six English cities

Source: https://www.cimt.org.uk/projects/mepres/book8/bk8i1/bk8_1i1.htm

4.4.3. Computation of relative distances

Having computed distances between all language pairs, I iterated through all distances, in order to �nd the

largest, which I discovered to be 16. This represented the pair of languages the furthest from each other,

therefore, the pair which ought to have the lowest similarity score possible: 0. Again, a pair of identical

languages (e.g. [eng, eng]) ought to have a similarity score of 1, and would have distance 1 returned from

the tree.

In order to �nd the equation to use to modify my raw data to �t the similarity score model, I plotted the

points on a graph of raw distance against theoretical similarity score using the computer software Autograph

v4.0.11 32, producing the following linear graph:

Figure 8: A graph showing raw distance against similarity score

Autograph computed the equation of this line to be y = −0.0667x + 1.067, where y is the similarity score,

and x the distance. I was therefore able to modify relationships/oop.py to write the adjusted score to

relationships/oop.json, instead of the raw distance.

4.4.4. Implementation into game

Finally, I adjusted game/lib/eurolingo− game.js to source language relationship data from relationships/oop.json,
which had been generated in the appropriate format (see Section 4.2.4) by relationships/oop.py.

No errors were encountered, and the OOP-generated relationship tables performed pleasingly, producing 4

reasonable multiple choice answers for all 51 origin languages.

32http://www.autograph-maths.com

18

https://www.cimt.org.uk/projects/mepres/book8/bk8i1/bk8_1i1.htm
http://www.autograph-maths.com


Part III.

Outcomes

5. Findings

5.1. Conclusion

I conclude that the linguistic distance tables I have generated are e�ective, and, having tested the game

(with their inclusion) on numerous occasions, I do not believe that any serious error has been made. For

example, the following set of multiple choice options, generated from my data, are su�ciently challenging,

and would discourage guessing, given the sentence:

Figure 9: Example of appropriate multiple-choice options generated by eurolingo for a sentence

Therefore, I believe that I can rather assuredly state that, where respected academic proposals regarding

a hierarchy exist, quantitative computation of the relationship between two nodes leads to sensible, and

potentially useful, insights.

I can also conclude that, when handling datasets as large as that provided by Tatoeba, the use of cloud

computing services, of which I was highly sceptical before undertaking this project, is not only bene�cial,

but also essential. This is representative of the trend in computing back to `thin-client'-style devices, where

mainframes perform mathematical operations to reveal patterns in data, only that these patterns are more

precise, and hence more noteworthy, than those of sixty years ago.

5.2. Evaluation: Potential �aws

• A greater number of steps on a journey between nodes does not necessarily show disparity between

those nodes. For example, (see Appendix 1a), Croatian has a distance of 3 from Serbian, however, this

is only as Croatian is more diverse, and has more dialects. Hence, whilst the dialect itself is indeed

more disparate from Serbian, the general Croatian and Serbian languages as a whole, are not.

• A journey to a `higher' level of the tree represents a greater abstraction; for example, the jump from

Indo-European to Proto-Everything is far more signi�cant than Portuguese-Galician to West Iberian,

yet this signi�cance was not re�ected in journey length. My languages object assumed that each edge

on the graph had a weight of 1, whereas, in reality, this is not the case. As no data was available to more

appropriately determine edge weights, I was not able to consider them, although, their inclusion would

have signi�cantly changed my algorithm, and required deeper research, beyond what has currently been

published. Only after hours of research did I discover that the problem, in its simplest (edge weight =

1) form, was asked of prospective Senior Engineers for Google!

• The algorithm I used to �nd the LCA of two nodes, and hence calculate distance (proposed by Djidjev,

et. al. (1991)), whilst the easiest for me to understand, was not the most e�cient. Had I implemented

Tarjan's o�-line lowest common ancestors algorithm, my program would have been O(n).

19



6. Wider implications

N.B. I have considered wider implications of my work further in the Student Pro�le Form.

Whilst the techniques which I have developed in the development of eurolingo are not suitable when com-

paring similarity of data ab initio, they could be useful when comparing widely held scienti�c belief (e.g.

predicted data) to radical new evidence. If for example, taxonomical rank would suggest that species A is the

biological third-cousin twice-removed of species B, we could calculate an expected similarity score for these

species, which could be compared to genetic evidence. These predictions, possible where historical evidence

exists (such as a genealogical tree), or contemporary scienti�c understanding is close to de�nite, may help

inform avenues of further research, guiding scientists to those where major breakthroughs may lie, rather

than providing the breakthroughs themselves.

20


	Pre-project work
	Introduction
	Aims and planning


	Investigation
	Research
	Programming


	Outcomes
	Findings
	Wider implications



